博客
关于我
STM32F7 LWIP协议栈TCP速度测试
阅读量:596 次
发布时间:2019-03-12

本文共 3152 字,大约阅读时间需要 10 分钟。

Comparing TCP Reception Performance Between LWIP and DJYIP Protocol Stacks on STM32F7

When evaluating the performance of the LWIP and DJYIP protocol stacks on STM32F7, it is important to understand the differences in TCP packet reception speeds under various conditions. This testing was conducted to ensure consistent hardware and software configurations while assessing the efficiency of the protocol stacks. The following analysis outlines the testing methodology, setup, and results.

Testing Objectives

The primary goal of this testing was to compare the TCP packet reception speeds of the LWIP and DJYIP protocol stacks under identical hardware and software conditions. By maintaining consistency in both hardware platforms and software configurations, we aimed to isolate any differences in performance that could be attributed to the protocol stacks themselves.

Testing Methodology

The testing was conducted using an STM32F7 development board with the following specifications:

  • Hardware Platform: STM32756G-EVAL2
  • Clock Frequency: 200MHz
  • Communication Interface: Direct connection to the sender board

The software configuration for both protocol stacks included:

  • Network Driver Mode: Interrupt-based
  • Buffer Pool Size: 16k bytes
  • TCP Window Size: 2048 bytes (2 * TCP MSS)

The testing process involved:

  • Code Modification: Adjusting the protocol stack configurations in lwipopts.h to optimize for high-throughput performance.
  • Client-Sender Configuration: Implementing a loop to continuously send TCP packets with varying sizes (64 to 1460 bytes).
  • Server-Receiver Configuration: Setting up a receiver loop to capture incoming data and calculate packet reception rates.
  • Testing Results

    The test results revealed significant differences between the two protocol stacks, particularly in terms of TCP reception performance:

    Data Package Size (Bytes) LWIP Reception Speed (Mbps) DJYIP Reception Speed (Mbps)
    1400 3.02 3.18
    1024 4.22 3.16
    512 3.07 3.16
    256 2.02 2.5
    128 0.2±0.2 1.76
    64 0.2±0.2 1.12
    Random (0-1460) 1M (within variation) 2.52

    These results indicate that the LWIP protocol stack generally outperformed the DJYIP stack, particularly for packet sizes of 1024 bytes and larger. It is worth noting that the performance difference for 1024-byte packets might be due to the way LWIP handles packets of sizes that are powers of two, which could be a coincidence or a reflection of underlying characteristics of the protocol stack.

    Implications for Network Performance

    The findings suggest that the choice of protocol stack can significantly impact TCP performance, especially under varying packet size conditions. While LWIP demonstrated slightly better performance for larger packets, it is crucial to consider the specific requirements of the application when selecting a protocol stack. DJYIP, while slightly less efficient for larger packets, might provide more predictable or consistent performance in certain scenarios.

    Future testing could explore additional factors such as packet fragmentation, lower-layer driver optimizations, and network hardware configurations to further refine the performance characteristics of these protocol stacks.

    转载地址:http://kszxz.baihongyu.com/

    你可能感兴趣的文章
    mysql deadlock found when trying to get lock暴力解决
    查看>>
    MuseTalk如何生成高质量视频(使用技巧)
    查看>>
    mutiplemap 总结
    查看>>
    MySQL DELETE 表别名问题
    查看>>
    MySQL Error Handling in Stored Procedures---转载
    查看>>
    MVC 区域功能
    查看>>
    MySQL FEDERATED 提示
    查看>>
    mysql generic安装_MySQL 5.6 Generic Binary安装与配置_MySQL
    查看>>
    Mysql group by
    查看>>
    MySQL I 有福啦,窗口函数大大提高了取数的效率!
    查看>>
    mysql id自动增长 初始值 Mysql重置auto_increment初始值
    查看>>
    MySQL in 太多过慢的 3 种解决方案
    查看>>
    MySQL InnoDB 三大文件日志,看完秒懂
    查看>>
    Mysql InnoDB 数据更新导致锁表
    查看>>
    Mysql Innodb 锁机制
    查看>>
    MySQL InnoDB中意向锁的作用及原理探
    查看>>
    MySQL InnoDB事务隔离级别与锁机制深入解析
    查看>>
    Mysql InnoDB存储引擎 —— 数据页
    查看>>
    Mysql InnoDB存储引擎中的checkpoint技术
    查看>>
    Mysql InnoDB存储引擎中缓冲池Buffer Pool、Redo Log、Bin Log、Undo Log、Channge Buffer
    查看>>