博客
关于我
STM32F7 LWIP协议栈TCP速度测试
阅读量:596 次
发布时间:2019-03-12

本文共 3152 字,大约阅读时间需要 10 分钟。

Comparing TCP Reception Performance Between LWIP and DJYIP Protocol Stacks on STM32F7

When evaluating the performance of the LWIP and DJYIP protocol stacks on STM32F7, it is important to understand the differences in TCP packet reception speeds under various conditions. This testing was conducted to ensure consistent hardware and software configurations while assessing the efficiency of the protocol stacks. The following analysis outlines the testing methodology, setup, and results.

Testing Objectives

The primary goal of this testing was to compare the TCP packet reception speeds of the LWIP and DJYIP protocol stacks under identical hardware and software conditions. By maintaining consistency in both hardware platforms and software configurations, we aimed to isolate any differences in performance that could be attributed to the protocol stacks themselves.

Testing Methodology

The testing was conducted using an STM32F7 development board with the following specifications:

  • Hardware Platform: STM32756G-EVAL2
  • Clock Frequency: 200MHz
  • Communication Interface: Direct connection to the sender board

The software configuration for both protocol stacks included:

  • Network Driver Mode: Interrupt-based
  • Buffer Pool Size: 16k bytes
  • TCP Window Size: 2048 bytes (2 * TCP MSS)

The testing process involved:

  • Code Modification: Adjusting the protocol stack configurations in lwipopts.h to optimize for high-throughput performance.
  • Client-Sender Configuration: Implementing a loop to continuously send TCP packets with varying sizes (64 to 1460 bytes).
  • Server-Receiver Configuration: Setting up a receiver loop to capture incoming data and calculate packet reception rates.
  • Testing Results

    The test results revealed significant differences between the two protocol stacks, particularly in terms of TCP reception performance:

    Data Package Size (Bytes) LWIP Reception Speed (Mbps) DJYIP Reception Speed (Mbps)
    1400 3.02 3.18
    1024 4.22 3.16
    512 3.07 3.16
    256 2.02 2.5
    128 0.2±0.2 1.76
    64 0.2±0.2 1.12
    Random (0-1460) 1M (within variation) 2.52

    These results indicate that the LWIP protocol stack generally outperformed the DJYIP stack, particularly for packet sizes of 1024 bytes and larger. It is worth noting that the performance difference for 1024-byte packets might be due to the way LWIP handles packets of sizes that are powers of two, which could be a coincidence or a reflection of underlying characteristics of the protocol stack.

    Implications for Network Performance

    The findings suggest that the choice of protocol stack can significantly impact TCP performance, especially under varying packet size conditions. While LWIP demonstrated slightly better performance for larger packets, it is crucial to consider the specific requirements of the application when selecting a protocol stack. DJYIP, while slightly less efficient for larger packets, might provide more predictable or consistent performance in certain scenarios.

    Future testing could explore additional factors such as packet fragmentation, lower-layer driver optimizations, and network hardware configurations to further refine the performance characteristics of these protocol stacks.

    转载地址:http://kszxz.baihongyu.com/

    你可能感兴趣的文章
    Nacos配置中心集群原理及源码分析
    查看>>
    nacos配置自动刷新源码解析
    查看>>
    Nacos集群搭建
    查看>>
    nacos集群搭建
    查看>>
    Navicat for MySQL 查看BLOB字段内容
    查看>>
    Neo4j电影关系图Cypher
    查看>>
    Neo4j的安装与使用
    查看>>
    Neo4j(2):环境搭建
    查看>>
    Neo私链
    查看>>
    nessus快速安装使用指南(非常详细)零基础入门到精通,收藏这一篇就够了
    查看>>
    Nessus漏洞扫描教程之配置Nessus
    查看>>
    Nest.js 6.0.0 正式版发布,基于 TypeScript 的 Node.js 框架
    查看>>
    nestJS学习
    查看>>
    NetApp凭借领先的混合云数据与服务把握数字化转型机遇
    查看>>
    NetBeans IDE8.0需要JDK1.7及以上版本
    查看>>
    netbeans生成的maven工程没有web.xml文件 如何新建
    查看>>
    netcat的端口转发功能的实现
    查看>>
    netfilter应用场景
    查看>>
    netlink2.6.32内核实现源码
    查看>>
    Netpas:不一样的SD-WAN+ 保障网络通讯品质
    查看>>